A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression
نویسندگان
چکیده
منابع مشابه
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression
Causal prediction has become a popular tool for neuroscience applications, as it allows the study of relationships between different brain areas during rest, cognitive tasks or brain disorders. We propose a nonparametric approach for the estimation of nonlinear causal prediction for multivariate time series. In the proposed estimator, C NPMR , Autoregressive modeling is replaced by Nonparametri...
متن کاملConsistency for the Least Squares Estimator in Non-parametric Regression
We shall study the general regression model Y = g 0 (X) + ", where X and " are independent. The available information about g 0 can be expressed by g 0 2 G for some class G. As an estimator of g 0 we choose the least squares estimator. We shall give necessary and suucient conditions for consistency of this estimator in terms of (basically) geometric properties of G. Our main tool will be the th...
متن کاملA Non-Parametric Approach to Spatial Causality
The purpose of this paper is to show the capacity of a new non-parametric test based on symbolic entropy and symbolic dynamics to deal with the detection of linear and non-linear spatial causality. The good performance of the new test in detecting spatial causality and causal weighting matrix is notable and gives rise to an expectation that it may form a adequate tool for constructive specifica...
متن کاملA Simple Consistent Non-parametric Estimator for the Regression Function in a Truncated Sample
Much recent work has focused on the estimation of regression functions in samples which are truncated or censored. Much of this work has focused on the estimation of a parametric regression function with an error distribution of unknown form. While these method relax a strong parametric assumption about which we seldom have a priori information, they still impose a strong parametric assumption ...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroinformatics
سال: 2016
ISSN: 1662-5196
DOI: 10.3389/fninf.2016.00019